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Find a first-order stationary point of a non-convex, 𝐿-smooth function 𝐹. 

AdaGrad-Norm

𝑤!"# = 𝑤! − 𝜂!𝑔!

Similar to SGD

Sum of stochastic 
gradients

*With major caveats 

Unique challenges connected to adaptive methods!

Prior work shows that adaptive step sizes can overcome the drawbacks of SGD!*
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Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• A key inequality may be vacuous:
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Key Idea 1: 
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when bound is non-vacuous

≥
1
2

• Most times are ”good” (typically)
• Large “bad” times can still ruin analysis
• Compensate for “bad” times with a few 

nearby, earlier ”good” ones

1 𝑇
Time

= “Good” times = “Bad” times



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• Cannot guarantee directly that 𝜂! ≳
#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).

Obtained via smoothness + 
unit-step property of AdaGrad



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• Cannot guarantee directly that 𝜂! ≳
#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes

Key Idea 2: 
Recursively improve crude bound on 

𝔼[ ∑ ∇𝐹 𝑤! %]

Start with a crude, polynomial bound 
∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇2 log 𝑇 3

Bound 𝜂! ≳
#

))* 456 ) +* w.h.p.

Invariant (from Challenge 1):
𝔼 ∑! 𝜂! ∇𝐹 𝑤! % ≤ 𝐹 𝑤# − 𝐹∗ + poly log(𝑇)

Conclude

∑!𝔼 ∇𝐹 𝑤! % ≲ 𝑇
),#
- log 𝑇

+,.
-

• Challenge 2: Step size scaling
• Cannot guarantee directly that 𝜂! ≳

#
)

(even in expectation).
• Crucial step is to bound 𝔼[ ∑! ∇𝐹(𝑤!) %] = ]𝑂(𝑇).



Best of Both Worlds

AdaGrad-Norm enjoys a min
!

∇𝐹 𝑤! % = ]𝑂(1/ 𝑇) convergence rate in the same setting as SGD (smooth + affine).

ü Without a uniform upper bound on the gradients or variance.
ü For any parameter choices 𝜂, 𝑏& > 0 (no knowledge of 𝐿, 𝜎& or 𝜎# is required).

Theorem



Best of Both Worlds

AdaGrad-Norm enjoys a min
!

∇𝐹 𝑤! % = ]𝑂(1/ 𝑇) convergence rate in the same setting as SGD (smooth + affine).

ü Without a uniform upper bound on the gradients or variance.
ü For any parameter choices 𝜂, 𝑏& > 0 (no knowledge of 𝐿, 𝜎& or 𝜎# is required).

Theorem

Remark

ü We show that AdaGrad-Norm automatically obtains a eO(1/T) convergence rate in the small noise regime.  



Best of Both Worlds

AdaGrad-Norm enjoys a min
!

∇𝐹 𝑤! % = ]𝑂(1/ 𝑇) convergence rate in the same setting as SGD (smooth + affine).

ü Without a uniform upper bound on the gradients or variance.
ü For any parameter choices 𝜂, 𝑏& > 0 (no knowledge of 𝐿, 𝜎& or 𝜎# is required).

Theorem

Remark
ü “Best of both worlds” result!

AdaGrad-Norm achieves order optimal convergence (similar to SGD) without tuning any hyperparameters!

Remark

ü We show that AdaGrad-Norm automatically obtains a eO(1/T) convergence rate in the small noise regime.  



Best of Both Worlds

AdaGrad-Norm enjoys a min
!

∇𝐹 𝑤! % = ]𝑂(1/ 𝑇) convergence rate in the same setting as SGD (smooth + affine).

ü Without a uniform upper bound on the gradients or variance.
ü For any parameter choices 𝜂, 𝑏& > 0 (no knowledge of 𝐿, 𝜎& or 𝜎# is required).

Theorem

Remark
ü “Best of both worlds” result!

AdaGrad-Norm achieves order optimal convergence (similar to SGD) without tuning any hyperparameters!

Remark

ü We show that AdaGrad-Norm automatically obtains a eO(1/T) convergence rate in the small noise regime.  

Thanks for listening!


