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Standard Stochastic Nonconvex Optimization Setup

Problem Setup
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When	𝐹 is twice-differentiable, equivalent to:

||∇!𝐹 𝑥 || ≤ 𝐿"	∀𝑥

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿"||𝑥 − 𝑦||      ∀	𝑥, 𝑦

Find a first-order stationary point of a non-convex, 𝐿"-smooth function 𝐹: 



Beyond uniform smoothness

Problem Setup
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When	𝐹 is twice-differentiable, ≈ equivalent to:

||∇!𝐹 𝑥 || ≤ 𝐿" + 𝐿#||∇𝐹(𝑥)||  ∀𝑥

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth1 function 𝐹: 

1Defined by [Zhang-He-Sra-Jadbabaie’20, Zhang-Jin-Fang-Wang’20]



Beyond uniform smoothness

Problem Setup

• Standard 𝐿-smoothness is equivalent to (𝐿, 0)-smoothness 
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||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#

||∇!𝐹 𝑥 || ≤ 𝐿" + 𝐿#||∇𝐹(𝑥)||  ∀𝑥

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth1 function 𝐹: 

1Defined by [Zhang-He-Sra-Jadbabaie’20, Zhang-Jin-Fang-Wang’20]

When	𝐹 is twice-differentiable, ≈ equivalent to:



Beyond uniform smoothness

Problem Setup

• Standard 𝐿-smoothness is equivalent to (𝐿, 0)-smoothness 
• Also captures a wide class of functions which are not uniformly smooth, e.g.:

• 𝐹 𝑥 = 𝑥$ for 𝑐 > 2 – (𝑐 𝑐 − 1 , 𝑐 − 1)-smooth
• 𝐹 𝑥 = 𝑒$!% for 𝑐 > 0 – (0, 𝑐′)-smooth
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||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#

||∇!𝐹 𝑥 || ≤ 𝐿" + 𝐿#||∇𝐹(𝑥)||  ∀𝑥

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth1 function 𝐹: 

1Defined by [Zhang-He-Sra-Jadbabaie’20, Zhang-Jin-Fang-Wang’20]

When	𝐹 is twice-differentiable, ≈ equivalent to:



Prior work on non-uniform smoothness

Normalized/Clipped SGD
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#

&
'(||*"||

               Normalized SGD

&
+,-{',||*"||}

         Clipped SGD
𝑤1(# = 𝑤1 − 𝜂1𝑔1	 𝜂1 =



Prior work on non-uniform smoothness
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑤1(# − ∇𝐹 𝑤1 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑤1 || ||𝑤1(# − 𝑤1||      ∀	||𝑤1(# − 𝑤1|| ≤ 1/𝐿#
To deterministically 

satisfy
Normalized/Clipped SGD

&
'(||*"||

               Normalized SGD

&
+,-{',||*"||}

         Clipped SGD
𝑤1(# = 𝑤1 − 𝜂1𝑔1	 𝜂1 =



Prior work on non-uniform smoothness
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑤1(# − ∇𝐹 𝑤1 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑤1 || ||𝑤1(# − 𝑤1||      ∀	||𝑤1(# − 𝑤1|| ≤ 1/𝐿#
To deterministically 

satisfy
Normalized/Clipped SGD

&
'(||*"||

               Normalized SGD

&
+,-{',||*"||}

         Clipped SGD
𝑤1(# = 𝑤1 − 𝜂1𝑔1	

Prior work1 established min
2

∇𝐹 𝑤1 ! = 𝑂(1/ 𝑇)
	

convergence rate assuming:

• 𝔼 𝑔 = ∇𝐹(𝑤	)         (unbiased stochastic gradient)
• sup

4
||𝑔	 − ∇𝐹 𝑤 ||! 	≤ 𝜎"!                 (bounded noise support)

1 [Zhang-He-Sra-Jadbabaie’20, Zhang-Jin-Fang-Wang’20, Crawshaw-Liu-Orabona-Zhang-Zhuang’22,…]

𝜂1 =



Prior work on non-uniform smoothness
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑤1(# − ∇𝐹 𝑤1 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑤1 || ||𝑤1(# − 𝑤1||      ∀	||𝑤1(# − 𝑤1|| ≤ 1/𝐿#
To deterministically 

satisfy
Normalized/Clipped SGD

&
'(||*"||

               Normalized SGD

&
+,-{',||*"||}

         Clipped SGD
𝑤1(# = 𝑤1 − 𝜂1𝑔1	

Prior work2 established min
2

∇𝐹 𝑤1 ! = 𝑂(1/ 𝑇)
	

convergence rate assuming:

• 𝔼 𝑔 = ∇𝐹(𝑤	)         (unbiased stochastic gradient)
• sup

4
||𝑔	 − ∇𝐹 𝑤 ||! 	≤ 𝜎"!                 (bounded noise support)

Significantly stronger assumption than is needed in 𝐿-smooth setting

2 [Zhang-He-Sra-Jadbabaie’20, Zhang-Jin-Fang-Wang’20, Crawshaw-Liu-Orabona-Zhang-Zhuang’22,…]

𝜂1 =



Prior work on non-uniform smoothness

AdaGrad-Norm

𝑤1(# = 𝑤1 	− 𝜂1𝑔1
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 0)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿"||𝑥 − 𝑦||      ∀	𝑥, 𝑦

Prior work3 established min
2

∇𝐹 𝑤1 ! = 𝑂(1/ 𝑇)
	

convergence rate assuming:

𝜂1 =
𝜂

𝑏"! + ∑56#1 ||𝑔5||!

3 [Li-Orabona’19,’20; Ward-Wu-Bottou’19; Kavis-Levy-Cevher’22; F-Tziotis-Caramanis-Mokhtari-Shakkottai-Ward’22]

• 𝔼 𝑔 = ∇𝐹(𝑤	)         (unbiased stochastic gradient)
• 𝔼 ||𝑔	 − ∇𝐹 𝑤 ||! ≤ 𝜎"! + 𝜎#!||∇𝐹 𝑤 ||!              (affine variance)



Prior work on non-uniform smoothness

AdaGrad-Norm

𝑤1(# = 𝑤1 	− 𝜂1𝑔1
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 0)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿"||𝑥 − 𝑦||      ∀	𝑥, 𝑦

Prior work3 established min
2

∇𝐹 𝑤1 ! = 𝑂(1/ 𝑇)
	

convergence rate assuming:

𝜂1 =
𝜂

𝑏"! + ∑56#1 ||𝑔5||!

3 [Li-Orabona’19,’20; Ward-Wu-Bottou’19; Kavis-Levy-Cevher’22; F-Tziotis-Caramanis-Mokhtari-Shakkottai-Ward’22]

• 𝔼 𝑔 = ∇𝐹(𝑤	)         (unbiased stochastic gradient)
• 𝔼 ||𝑔	 − ∇𝐹 𝑤 ||! ≤ 𝜎"! + 𝜎#!||∇𝐹 𝑤 ||!              (affine variance)

No tuning w.r.t. 𝐿!!



Prior work on non-uniform smoothness

AdaGrad-Norm

𝑤1(# = 𝑤1 	− 𝜂1𝑔1
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Problem Setup

Find a first-order stationary point of a non-convex, (𝐿", 0)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿"||𝑥 − 𝑦||      ∀	𝑥, 𝑦

Prior work3 established min
2

∇𝐹 𝑤1 ! = 𝑂(1/ 𝑇)
	

convergence rate assuming:

𝜂1 =
𝜂

𝑏"! + ∑56#1 ||𝑔5||!

3 [Li-Orabona’19,’20; Ward-Wu-Bottou’19; Kavis-Levy-Cevher’22; F-Tziotis-Caramanis-Mokhtari-Shakkottai-Ward’22]

• 𝔼 𝑔 = ∇𝐹(𝑤	)         (unbiased stochastic gradient)
• 𝔼 ||𝑔	 − ∇𝐹 𝑤 ||! ≤ 𝜎"! + 𝜎#!||∇𝐹 𝑤 ||!              (affine variance)

Analysis heavily relies on the 𝐿"-smoothness assumption

No tuning w.r.t. 𝐿!!



Prior work on non-uniform smoothness

AdaGrad-Norm

𝑤1(# = 𝑤1 	− 𝜂1𝑔1
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Problem Setup

𝜂1 =
𝜂

𝑏"! + ∑56#1 ||𝑔5||!

No tuning w.r.t. 𝐿!!

Question
Given that AdaGrad-Norm adapts to the smoothness parameter 𝐿" automatically…

Is it possible to prove that AdaGrad-Norm converges at rate H𝑂(1/ 𝑇) under:
• (𝐿", 𝐿#)-smoothness
• Affine variance

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#



Prior work on non-uniform smoothness

AdaGrad-Norm

𝑤1(# = 𝑤1 	− 𝜂1𝑔1
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Problem Setup

𝜂1 =
𝜂

𝑏"! + ∑56#1 ||𝑔5||!

No tuning w.r.t. 𝐿!!

Question

Yes! 

Given that AdaGrad-Norm adapts to the smoothness parameter 𝐿" automatically…

Is it possible to prove that AdaGrad-Norm converges at rate H𝑂(1/ 𝑇) under:
• (𝐿", 𝐿#)-smoothness
• Affine variance

Find a first-order stationary point of a non-convex, (𝐿", 𝐿#)-smooth function 𝐹: 

||∇𝐹 𝑥 − ∇𝐹 𝑦 || ≤ 𝐿" + 𝐿#||∇𝐹 𝑦 || ||𝑥 − 𝑦||      ∀	||𝑥 − 𝑦|| ≤ 1/𝐿#



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!

15

Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• ⟹ Obtaining a useful descent lemma from smoothness becomes challenging

        𝜂1 ∇𝐹 𝑤1 ! ≤ 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝜂1 ∇𝐹 𝑤1 , ∇𝐹 𝑤1 − 𝑔1 + (8#(8$||∇: 4" ||)&"
%

!
𝑔1 !

Not mean-zero!



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
     and     𝑏𝑖𝑎𝑠1 = 𝐸1

||*"||%

=#%(∑&($" ||*&||%

Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• ⟹ Obtaining a useful descent lemma from smoothness becomes challenging

        𝜂1 ∇𝐹 𝑤1 ! ≤ 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝜂1 ∇𝐹 𝑤1 , ∇𝐹 𝑤1 − 𝑔1 + (8#(8$||∇: 4" ||)&"
%

!
𝑔1 !

• Especially challenging under affine variance
J𝜂1(1 − 𝜎# ⋅ 𝑏𝑖𝑎𝑠1) ∇𝐹 𝑤1 ! ≤ 𝔼1 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝑐 ⋅ 𝔼1[𝜂1! 𝑔1 !]

Not mean-zero!



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
     and     𝑏𝑖𝑎𝑠1 = 𝐸1

||*"||%

=#%(∑&($" ||*&||%

Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• Especially challenging under affine variance
J𝜂1(1 − 𝜎# ⋅ 𝑏𝑖𝑎𝑠1) ∇𝐹 𝑤1 ! ≤ 𝔼1 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝑐 ⋅ 𝔼1[𝜂1! 𝑔1 !]

Step-size “proxy”
Lower bound for 𝔼1[𝜂1]



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
     and     𝑏𝑖𝑎𝑠1 = 𝐸1

||*"||%

=#%(∑&($" ||*&||%

Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• Especially challenging under affine variance
J𝜂1(1 − 𝜎# ⋅ 𝑏𝑖𝑎𝑠1) ∇𝐹 𝑤1 ! ≤ 𝔼1 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝑐 ⋅ 𝔼1[𝜂1! 𝑔1 !]

Possibly negative



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
     and     𝑏𝑖𝑎𝑠1 = 𝐸1

||*"||%

=#%(∑&($" ||*&||%

Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• Especially challenging under affine variance
J𝜂1(1 − 𝜎# ⋅ 𝑏𝑖𝑎𝑠1) ∇𝐹 𝑤1 ! ≤ 𝔼1 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝑐 ⋅ 𝔼1[𝜂1! 𝑔1 !]

Key Idea 1: 
Focus on the “good” times

when bound is non-vacuous

≥
1
2



Challenges for Adaptive Methods

Descent direction −𝜂1𝑔1 is biased!
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J𝜂1 =
&
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Overcoming the challenges of adaptive step sizes
• Challenge 1: Bias + affine variance

• Step size 𝜂1 depends on past and current stochastic gradients.

• Especially challenging under affine variance
J𝜂1(1 − 𝜎# ⋅ 𝑏𝑖𝑎𝑠1) ∇𝐹 𝑤1 ! ≤ 𝔼1 𝐹 𝑤1 − 𝐹 𝑤1(# + 𝑐 ⋅ 𝔼1[𝜂1! 𝑔1 !]

• Most times are (typically) “good” ⟹ descent inequality (roughly) of the form:

𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)

22

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

23

J𝜂1 =
&
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Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

24

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

𝐿-smoothness ⟹
 𝔼 ||𝑔1||! = 𝑝𝑜𝑙𝑦(𝑡)



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
• Challenge 2: Step size scaling

• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇
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J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

𝐿-smoothness ⟹
 𝔼 ||𝑔1||! = 𝑝𝑜𝑙𝑦(𝑡)

Bound may be 
exponentially worse under 
(𝐿", 𝐿#)-smoothness



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
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An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
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If		this	were	true…	

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳ 𝔼 J𝜂? 𝔼 S
1>?

||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

Descent inequality

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…



Stochastic Optimization with Adaptive Step Sizes – Key Ideas

Overcoming the challenges of adaptive step sizes
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If		this	were	true…	

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳ 𝔼 J𝜂? 𝔼 S
1>?

||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

Positive correlation 
+ (roughly) 

decreasing 𝜂1

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…
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If		this	were	true…	

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳ 𝔼 J𝜂? 𝔼 S
1>?

||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

Jensen’s

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…
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If		this	were	true…

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

A quadratic inequality in 𝔼 ∑1>? ||∇𝐹 𝑤1 ||! ! ⟹ 𝔼 ∑1>? ||∇𝐹 𝑤1 ||! = H𝑂( 𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…
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If		this	were	true…	

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

A quadratic inequality in 𝔼 ∑1>? ||∇𝐹 𝑤1 ||! ! ⟹ 𝔼 ∑1>? ||∇𝐹 𝑤1 ||! = H𝑂( 𝑇)

A stronger bound than necessary to show 
𝔼[J𝜂?] ≳ 1/ 𝑇…

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

An idea: Suppose J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated…
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If		 J𝜂?  and ||∇𝐹 𝑤1 ||! 1>?  were positively correlated:	

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1>?

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

𝑏"! + 𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1>? ||∇𝐹 𝑤1 ||!

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1>? J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂?] ≳ 1/ 𝑇

Problem: increasing ||∇𝐹 𝑤1 ||!, at least intuitively, could decrease J𝜂?!
⟹ possibly negatively correlated…

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
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Key Idea 2: 
Analyze convergence only until a stopping time 𝜏 satisfying 𝔼 𝜏 = Ω 𝑇 :

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1AB J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂BC#] ≳ 1/ 𝑇 for some 𝔼 𝜏 = Ω(𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
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Key Idea 2: 
Analyze convergence only until a stopping time 𝜏 satisfying 𝔼 𝜏 = Ω 𝑇 :

∃𝜏 w/ 𝔼 𝜏 = Ω(𝑇) such that J𝜂1	and	∇𝐹(𝑤1)	are	roughly	positively	correlated	before	𝝉:

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1AB

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝑏"! +
𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝛿

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1AB J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂BC#] ≳ 1/ 𝑇 for some 𝔼 𝜏 = Ω(𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
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Key Idea 2: 
Analyze convergence only until a stopping time 𝜏 satisfying 𝔼 𝜏 = Ω 𝑇 :

Stopped descent inequality

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1AB J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂BC#] ≳ 1/ 𝑇 for some 𝔼 𝜏 = Ω(𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

∃𝜏 w/ 𝔼 𝜏 = Ω(𝑇) such that J𝜂1	and	∇𝐹(𝑤1)	are	roughly	positively	correlated	before	𝝉:

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1AB

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝑏"! +
𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝛿
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Key Idea 2: 
Analyze convergence only until a stopping time 𝜏 satisfying 𝔼 𝜏 = Ω 𝑇 :

1
𝛿 = Θ(T)

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1AB J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂BC#] ≳ 1/ 𝑇 for some 𝔼 𝜏 = Ω(𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 

Rough positive correlation

∃𝜏 w/ 𝔼 𝜏 = Ω(𝑇) such that J𝜂1	and	∇𝐹(𝑤1)	are	roughly	positively	correlated	before	𝝉:

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1AB

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝑏"! +
𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝛿
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∃𝜏 such that J𝜂1	and	∇𝐹(𝑤1)	are	roughly	positively	correlated	before	𝝉:

𝑝𝑜𝑙𝑦 log 𝑇 ≥ 𝔼 S
1AB

J𝜂1||∇𝐹 𝑤1 ||! ≳
𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝑏"! +
𝑇𝜎"! + 1 + 𝜎#! 𝔼 ∑1AB ||∇𝐹 𝑤1 ||!

𝛿

Key Idea 2: 
Analyze convergence only until a stopping time 𝜏 satisfying 𝔼 𝜏 = Ω 𝑇 :

1
𝛿 = Θ(T)

Solving ⟹ 𝔼 ∑1AB ||∇𝐹 𝑤1 ||! = H𝑂(𝑇) 
⟹ 𝔼[J𝜂BC#] ≳ 1/ 𝑇

• Challenge 2: Step size scaling
• How to obtain a convergence rate from the following descent inequality?
  𝔼 ∑1AB J𝜂1||∇𝐹 𝑤1 ||! ≤ 𝐹 𝑤" − 𝐹∗ + 𝑐	poly	log(𝑇)
• Would suffice to show that 𝔼[J𝜂BC#] ≳ 1/ 𝑇 for some 𝔼 𝜏 = Ω(𝑇)

J𝜂1 =
&

$(∑&'" ||*&||%($!||∇: 4" ||%
 



Convergence under non-uniform smoothness condition

AdaGrad-Norm Algorithm

𝑤1(# = 𝑤1 −
𝜂

𝑏"! + ∑56#1 𝑔1 !
⋅ 𝑔1	

AdaGrad-Norm enjoys a min
1

∇𝐹 𝑤1 ! = H𝑂(1/ 𝑇) convergence rate assuming:
• 𝐹 is (𝐿", 𝐿#)-smooth and either:

 𝜎# < 1 or     𝜎# ≥ 1 and:  (i) mini-batch size Ω(𝜎#!), or 
                 (ii) 𝐹 is “polynomially-bounded”

Theorem (COLT’23)

38

𝜂 ≲ 1/𝐿#(1 + 𝜎#!)



There is a stochastic gradient oracle which:
• Is unbiased and satisfies affine variance (𝜎" = 0, 𝜎# > 1)
• Yet does not converge with constant probability on a 1-D quadratic function in many parameter regimes

• E.g., when 𝛾 = 0, diverges for any choice of 𝜂 

Non-Convergence of standard algorithms under multiplicative noise

Normalized/Clipped SGD

Theorem (COLT’23)

39

• AdaGrad-Norm works in settings where many standard algorithms for (𝐿", 𝐿#)-optimization can fail!

Key Takeaway

𝜂1 =

&
'(||*"||

               Normalized SGD

&
+,-{',||*"||}

         Clipped SGD
𝑤1(# = 𝑤1 − 𝜂1𝑔1	



Concurrent work in COLT’23 [Wang-Zhang-Ma-Chen’23]

• Analyze AdaGrad under 𝐿", 𝐿# -smoothness and affine variance
• Establish convergence without some technical restrictions needed for our analysis
• They bound the bias between 𝑔1 and 𝜂1 using an auxiliary function which telescopes

• We give a different analysis relying on a carefully-constructed stopping time 𝜏

Concurrent work at COLT’23

40

Gives descent inequality 
over entire time horizon [𝑇]

“Decorrelates” gradients 
from steps-sizes before 𝜏

Useful in settings where 
descent inequality holds 
only over a random 𝑆 ⊂ [𝑇]



Convergence under non-uniform smoothness condition

AdaGrad-Norm Algorithm

𝑤1(# = 𝑤1 −
𝜂

𝑏"! + ∑56#1 𝑔1 !
⋅ 𝑔1	

Theorem (COLT’23)
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𝜂 ≲ 1/𝐿#(1 + 𝜎#!)

Any questions can be sent to:
{matthewfaw, litu.rout}@utexas.edu

Thanks for listening!

Beyond Uniform Smoothness: A 
Stopped Analysis of Adaptive SGD

arXiv:2302.06570

AdaGrad-Norm enjoys a min
1

∇𝐹 𝑤1 ! = H𝑂(1/ 𝑇) convergence rate assuming:
• 𝐹 is (𝐿", 𝐿#)-smooth and either:

 𝜎# < 1 or     𝜎# ≥ 1 and:  (i) mini-batch size Ω(𝜎#!), or 
                 (ii) 𝐹 is “polynomially-bounded”
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