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Motivation

• Gig-economy workers: 
o Ride-sharing drivers
o Delivery drivers
o Crowdsourcing workers

• Decide whether to accept a task and collect a reward, or skip on it
• In case of acceptance, worker becomes busy for a short time period
• In many applications, busy periods have fixed duration (hour, day, week)

• Problem: Decide whether to accept or reject a given task



Problem Setting

• Sequence of 𝑛 IID rewards (requests of fixed duration) 
• Decision-maker observes realized reward 𝑋! of each round and decides

o Accept the reward and become busy for the subsequent 𝑑 rounds or
o Reject the reward and remain available for the next round

• Delay/busy time 𝑑 is known, but time horizon 𝑛 is unknown
• Reward distribution D is known (or can be learned)

• Goal: Maximize the total expected reward collected 
o Compete against the expected reward collected by a Prophet 
o Prophet knows all the realizations a priori and has infinite computational power



Known Reward Distribution

• Reward distribution D is known to the decision-maker.
• Assuming large (or infinite) time horizon, a fixed-threshold policy should apply

o Compute a threshold 𝜏 as a function of D and d
o At round t, if the resource is available and 𝑋! ≥ 𝜏 accept, otherwise reject

• We need to guarantee that the expected reward collected is “close” to that of a 
Prophet
o How to define 𝜏?
o Can we characterize the Prophet’s expected reward?
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Infinite-dimensional LP relaxation:
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Known Reward Distribution

Infinite-dimensional LP relaxation:

0 𝑥

𝑞(𝑥)

area of 𝑞 𝑥 is at most  !
"#!

𝑓(𝑥)

Claim: LP yields upper bound on the Prophet’s expected reward:
𝑛 ⋅ ∫"#$

% 𝑥 ⋅ 𝑞∗ 𝑥 ≥ 𝑂𝑃𝑇 (up to small additive error)
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Known Reward Distribution

Infinite-dimensional LP relaxation:
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Known Reward Distribution

Infinite-dimensional LP relaxation:
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Optimal value:    𝑛 ⋅ ∫678
9 𝑥 ⋅ 𝑞∗ 𝑥 𝑑𝑥 = 𝑛 ⋅ 𝔼[𝑋 ⋅ 𝕝[𝑋 ≥ 𝜏]]
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At any round t, Algorithm 1 collects in expectation:
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Markov Reward Process:

0 1 2 d-1 d

State: #rounds until available

1
𝑑 + 1

1 −
1

𝑑 + 1

11111

Stationary Distribution:  

Algorithm starts at state 0

. . .
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Markov Reward Process:

0 1 2 d-1 d

State: #rounds until available

1
𝑑 + 1

1 −
1

𝑑 + 1

11111

Stationary Distribution:  

Converges exponentially fast to stationarity

. . .
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At any round t, Algorithm 1 collects in expectation:

• Probability of being available:                   = 342
;342 ≈

2
;

(up to vanishing in t 
additive error)

• Also,                        = ∫678
9 𝑥 ⋅ 𝑞∗ 𝑥 𝑑𝑥

Hence,                                ≥ <=>
?
⋅ 2
;

(up to vanishing in t additive error)



Known Reward Distribution

By summing over n rounds, we get:

• We show that 𝜌 𝑑 ≈ 2
;

is the best possible guarantee asymptotically



Unknown Reward Distribution

• Reward distribution is initially unknown
• Busy time d is known, but time horizon n is unknown
• Distribution has bounded support in [0,1]
• Rewards are not observed while blocked
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Unknown Reward Distribution

Goal: Bound the regret against the Bayesian policy for n rounds 

Regret 𝑛 = 𝔼[𝐴(𝑛)] − 𝔼[𝐿(𝑛)]

𝐴 𝑛 : reward of (Bayesian) Algorithm for 𝑛 rounds
𝐿 𝑛 : reward of Learning algorithm for 𝑛 rounds



Unknown Reward Distribution
Step 1: Reducing regret to estimation error of each round

• Compensated coupling technique [Vera & Banerjee, 2020]
• Define (fictitious) policy 𝑃C, which

o Follows the decisions of 𝐿 for the first 𝑖 steps (including 𝑖)
o Follows the decisions of 𝐴 for rounds 𝑖 + 1 to 𝑛
o Note 𝐴 ≡ 𝑃$ and 𝐿 ≡ 𝑃)



Unknown Reward Distribution
Step 1: Reducing regret to estimation error of each round

• Since rewards are in [0,1] and d is fixed, for any round 𝑖:

𝔼 𝑃C12(𝑛) − 𝑃C(𝑛) ≤ Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)

Regret 𝑛 = 𝔼 𝐴 𝑛 − 𝔼 𝐿 𝑛 =P
C72

?

𝔼 𝑃C12(𝑛) − 𝑃C(𝑛)
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• Fact: At round 𝑖 the learning algorithm collects at least ≈ 𝑖/(𝑑 + 1) samples.
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and, hence,  
Regret 𝑛 ≾ 𝑛 𝑑 log(n)

Dependence on d is not necessary



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Fact: At round 𝑖 the learning algorithm collects at least ≈ 𝑖/(𝑑 + 1) samples.

• Using standard concentration results (Dvoretzky-Kiefer-Wolfowitz inq.), we show that

Pr 𝑋* ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏) ≾
𝑑
𝑖
log(𝑖)

and, hence,  
Regret 𝑛 ≾ 𝑛 𝑑 log(n)

Collecting ≈ 𝑖/(𝑑 + 1) samples by 
round 𝑖 is very pessimistic 
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Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Recall that for algorithm A (Bayesian), the resource is available ≈ 1/2-fraction of rounds (in 

expectation)
• This holds even if we slightly perturb the threshold
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Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Recall that for algorithm A (Bayesian), the resource is available ≈ 1/2-fraction of rounds (in 

expectation)

• Let B be an eager version of algorithm A, with threshold 𝜏+ = 𝐹'((1 − ,/.
/0()

0 1 2 d-1 d

3/2
𝑑 + 1

11111
. . .
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3/2
𝑑 + 1
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Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Recall that for algorithm A (Bayesian), the resource is available ≈ 1/2-fraction of rounds (in 

expectation)

• Let B be an eager version of algorithm A, with threshold 𝜏+ = 𝐹'((1 − ,/.
/0()

Properties:
• B has smaller threshold than A

• Thus, B observes less samples than A in expectation
• Still, B observes 𝑂(𝑖) (independent of 𝑑) number of samples by round 𝑖 w.h.p.
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w.h.p.

• Thus, L also observes 𝑂(𝑖) (independent of 𝑑) number of samples by round 𝑖 w.h.p. 
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Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 1

B(  ): #samples = 1



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 1

B(  ): #samples = 1



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 1

B(  ): #samples = 1



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 2

B(  ): #samples = 2
\τ > τ+ > X



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 2

B(  ): #samples = 2
\τ > τ+ > X



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 3

B(  ): #samples = 3
\τ > X > τ+



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 3

B(  ): #samples = 3
\τ > X > τ+



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = +1

B(  ): #samples = 0
\τ > X



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = +2

B(  ): #samples = 0
X > \τ



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = +2

B(  ): #samples = 0



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = +2

B(  ): #samples = 0



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = +1

B(  ): #samples = 0
τ+ > X



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Key-insight: After O(d,log(n)) rounds, the threshold of learning algorithm L will be greater 

than that of B for all 𝑖 ≥ O(d,log(n)) w.h.p.

• In this case, we show via coupling that L observes more samples than B for 𝑖 ≥ 𝑂(𝑑,log(n))
w.h.p.

0 1 2 d-1 d. . .

L(  ): #samples = 0

B(  ): #samples = 0
τ+ > X



Unknown Reward Distribution
Step 2: Control Pr 𝑋C ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏)
• Thus, at round 𝑖 the learning algorithm collects O(𝑖) samples w.h.p.

• Using that fact

Pr 𝑋* ∈ 𝜏, �̂�(𝑖) ∪ (�̂�(𝑖), 𝜏) ≾
log(𝑖)
𝑖

and, hence,  
Regret 𝑛 ≾ 𝑛 log(n)



Regret Lower Bound
By reducing the problem to a two-armed bandit problem, we prove the 
following lower bound:

• The regret of our algorithm is optimal up to polylog factors and dependence on d



Thank you for your attention


