Single-Sample Prophet Inequalities via Greedy-Ordered Selection

Matthew Faw (UT Austin)

January 10, 2022

Joint work with C.Caramanis, P.Dütting, F.Fusco, P.Lazos, S.Leonardi, O.Papadigenopoulos, E.Pountourakis, and R.Reiffenhäuser

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards $X_i \sim D_i$ arrive one at a time
- Gambler must *irrevocably* decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game

$$X_1 = 10 \qquad X_2 = 2 \qquad X_3 = 11$$

$$D_1 \qquad D_2 \qquad D_3 \qquad D_4 \qquad D_5$$

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards $X_i \sim D_i$ arrive one at a time
- Gambler must *irrevocably* decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game

$$X_1 = 10 \qquad X_2 = 2 \qquad X_3 = 11$$

$$D_1 \qquad D_2 \qquad D_3 \qquad D_4 \qquad D_5$$

• Prophet collects *largest* reward $\max_{i \in [N]} X_i$.

SSPIs via Greedy-Ordered Selection

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards $X_i \sim D_i$ arrive one at a time
- Gambler must *irrevocably* decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game
- Prophet collects *largest* reward $\max_{i \in [N]} X_i$.
- **Goal**: Maximize expected reward collected by Gambler, relative to that of an *all-knowing* Prophet.

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards $X_i \sim D_i$ arrive one at a time
- Gambler must *irrevocably* decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game
- Prophet collects *largest* reward $\max_{i \in [N]} X_i$.
- **Goal**: Maximize expected reward collected by Gambler, relative to that of an *all-knowing* Prophet.
 - i.e., design an " α -competitive" Gambler:

$$\inf_{\mathcal{D}=\mathcal{D}_1\times\ldots\times\mathcal{D}_N}\frac{\mathbb{E}_{\mathcal{D}}\left[\mathsf{Gambler}\right]}{\mathbb{E}_{\mathcal{D}}\left[\mathsf{Prophet}\right]}\geq\frac{1}{\alpha}.$$

for smallest possible $\alpha \geq 1$

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

Notable Results:

- \exists a 2-competitive *threshold-based* Gambler policy
- No policy can be < 2-competitive
- But need to know all distributions to compute these thresholds...

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

Notable Results:

- \exists a 2-competitive *threshold-based* Gambler policy
- No policy can be < 2-competitive
- But need to know all distributions to compute these thresholds...

Question

What (if anything) can a Gambler do if she has only a single sample from each D_i ?

Gambling Against a Prophet with a Single Sample

- *N* samples $S_i \sim D_i$ given, rewards $X_i \sim D_i$ arrive one at a time
- Gambler must *irrevocably* decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game

$$X_1 = 10$$
 $X_2 = 2$ $X_3 = 11$

• Prophet collects *largest* reward $\max_{i \in [N]} X_i$.

 $X_{1} = 10 X_{2} = 2 X_{3} = 11 X_{4} = 100 X_{5} = 0$ $S_{1} = 5 S_{2} = 10 S_{3} = 100 S_{4} = 0 S_{5} = 1$

3/18

Gambling Against a Prophet with a Single Sample

- *N* samples $S_i \sim D_i$ given, rewards $X_i \sim D_i$ arrive one at a time
- Gambler must irrevocably decide whether to:
 - a) Collect X_i and end the game, or
 - b) Forfeit X_i and continue the game
- Prophet collects *largest* reward $\max_{i \in [N]} X_i$.
- Perhaps surprisingly, Rubenstein, Wang, and Weinberg (ITCS'20) proved that
 - \exists a 2-competitive (hence *optimal*) **single-sample** policy:
 - Accept the first reward $\geq \tau = \max_i S_i$

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)
- However, this reduction is *necessarily* lossy:
 - Some rewards and samples are never used/observed by the policy
 - Leads to inherently suboptimal competitive guarantees

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)
- However, this reduction is *necessarily* lossy:
 - Some rewards and samples are never used/observed by the policy
 - Leads to inherently suboptimal competitive guarantees

Can we do better??

4/18

Our Contributions

- Analyze SSPIs beyond single-choice directly, without reducing to OOS, via an idea we term greedy-ordered selection
- Identify a common property of matroids exploited in many OOS algorithms

 a partition property which can be used (together with the optimal single-choice SSPI) to obtain improved competitive guarantees
- O Discuss some interesting new connections between SSPIs and OOSs

Our Contributions

Our focus today:

- Analyze SSPIs *beyond* single-choice **directly**, *without* reducing to OOS, via an idea we term **greedy-ordered selection**
 - Specifically for the case of matching with edge arrivals
- Identify a common property of matroids exploited in many OOS algorithms

 a partition property which can be used (together with the optimal single-choice SSPI) to obtain improved competitive guarantees
- O Discuss some interesting new connections between SSPIs and OOSs

Some Notable Results

		Combinatorial set	Previous best	Our results
		General matching (edge arrivals)	512	16
red		Budget-additive combinatorial auction	N/A	24
de	uo	Bipartite matching (edge arrivals)	256	16
ō-	selection		6.75 (degree- <i>d</i>)	16
Greedy-ordered	sele		$\mathcal{O}(d^2)$ -samples	1 sample
J.e		Bipartite matching (vertex arrivals)	13.5	8
		Transversal matroid	16	8
۲	×	Graphic matroid	8	4
artition	property	Co-graphic matroid	12	6
arti		Low density matroid	$4\gamma(M)$	$2\gamma(M)$
۲.		Column k-sparse linear matroid	4 <i>k</i>	2 <i>k</i>

Table: Summary of main results

|--|--|--|--|--|--|--|

Main Idea: Greedy-Ordered Selection

Our main results (for matchings and combinatorial auctions) are obtained through a framework we call **greedy-ordered selection**. The general technique is:

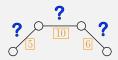
- O Design a threshold-based Gambler policy
- Ouple this policy to an *equivalent* "offline" algorithm which traverses samples *and* rewards *together* in decreasing order of weight
- Guarantee that "important" elements are "typically" selected by this offline algorithm (which is *easier to analyze*)

Greedily Gambling Against a Prophet with a Single Sample

The greedy online policy for matching with edge arrivals:

- Samples $S_e \sim D_e$ for each edge *e* given, rewards $X_e \sim D_e$ arrive one at a time
 - Offline, compute the greedy (maximal) matching M_S on the samples
 - Set a threshold τ_e to be the weight of the heaviest edge in M_S adjacent to e.
 - ▶ Online, accept each arriving edge *e* if it is feasible and $X_e \ge \tau_e$.

Offline (samples shown below in orange)



9/18

Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

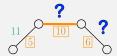
• Compute greedy matching on samples M_S

Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

• Compute greedy matching on samples M_S

Online (rewards shown above in blue)

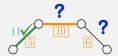
• Rewards X_e arrive one at a time



Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

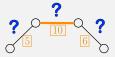
• Compute greedy matching on samples M_S

- Rewards X_e arrive one at a time
- Accept an arriving edge *e* iff it is:
 - Feasible
 - ${f O}$ Above au_e , the heaviest edge in M_S adjacent to e

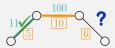


Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

• Compute greedy matching on samples M_S



- Rewards X_e arrive one at a time
- Accept an arriving edge *e* iff it is:
 - Feasible
 - 2 Above τ_e , the heaviest edge in M_S adjacent to e



Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

• Compute greedy matching on samples M_S

- Rewards X_e arrive one at a time
- Accept an arriving edge *e* iff it is:
 - Feasible

Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

• Compute greedy matching on samples M_S

- Rewards X_e arrive one at a time
- Accept an arriving edge *e* iff it is:
 - Feasible

Offline (samples shown below in orange, threshold $\tau_e = 10$ for every edge)

• Compute greedy matching on samples M_S

- Rewards X_e arrive one at a time
- Accept an arriving edge *e* iff it is:
 - Feasible

An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

- Deferred decisions (offline):
 - ► (Conceptually) generate 2 "anonymous" values $V_{1,e}$, $V_{2,e} \sim D_e$ for each edge e (relabel s.t. $V_{1,e} > V_{2,e}$)
 - Greedily traverse these 2n values:
 - When V_{1,e} is encountered, flip a *fair coin* to determine "status" (reward/sample)
 - 2 When $V_{2,e}$ is encountered, set its status to opposite of $V_{1,e}$

An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

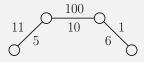
- Deferred decisions (offline):
 - ► (Conceptually) generate 2 "anonymous" values $V_{1,e}$, $V_{2,e} \sim D_e$ for each edge e (relabel s.t. $V_{1,e} > V_{2,e}$)
 - Greedily traverse these 2n values:
 - When V_{1,e} is encountered, flip a *fair coin* to determine "status" (reward/sample)
 - 2 When $V_{2,e}$ is encountered, set its status to *opposite* of $V_{1,e}$
- Compute the greedy sample solution, M_S , and the thresholds, τ_e , *exactly* as before

An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

- Deferred decisions (offline):
 - ► (Conceptually) generate 2 "anonymous" values $V_{1,e}$, $V_{2,e} \sim D_e$ for each edge e (relabel s.t. $V_{1,e} > V_{2,e}$)
 - Greedily traverse these 2n values:
 - When V_{1,e} is encountered, flip a *fair coin* to determine "status" (reward/sample)
 - 2 When $V_{2,e}$ is encountered, set its status to *opposite* of $V_{1,e}$
- Compute the greedy sample solution, M_S , and the thresholds, τ_e , *exactly* as before
- Accept elements online *exactly* as before

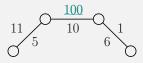
Offline (2n "anonymous" values below and above)



11/18

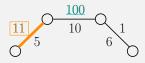
Offline (2n "anonymous" values below and above)

• The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2

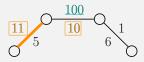


Offline (2n "anonymous" values below and above)

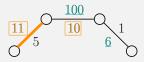
• The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2



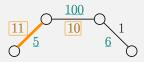
- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for each edge e, $V_{2,e}$ is assigned the opposite, deterministically



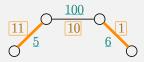
- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for each edge e, $V_{2,e}$ is assigned the opposite, deterministically



- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for each edge e, $V_{2,e}$ is assigned the opposite, deterministically

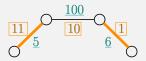


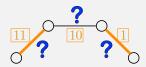
- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for each edge e, $V_{2,e}$ is assigned the opposite, deterministically



Offline (2n "anonymous" values below and above)

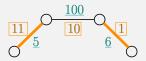
- \bullet The largest value for each edge e, $V_{1,e},$ assigned as \underline{reward} or sample w.p. $1\!/\!2$
- The smaller value for *each edge e*, *V*_{2,*e*} is assigned the *opposite*, deterministically





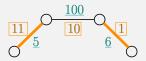
Offline (2n "anonymous" values below and above)

- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, *V*_{2,*e*} is assigned the *opposite*, deterministically



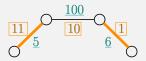
Offline (2n "anonymous" values below and above)

- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V_{2,e} is assigned the *opposite*, deterministically



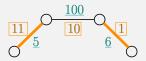
Offline (2n "anonymous" values below and above)

- \bullet The largest value for each edge e, $V_{1,e},$ assigned as \underline{reward} or sample w.p. $1\!/\!2$
- The smaller value for *each edge e*, *V*_{2,*e*} is assigned the *opposite*, deterministically



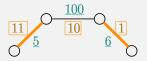
Offline (2n "anonymous" values below and above)

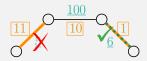
- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V_{2,e} is assigned the *opposite*, deterministically



Offline (2n "anonymous" values below and above)

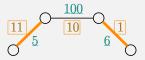
- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for each edge e, $V_{2,e}$ is assigned the opposite, deterministically





Offline (2*n* "anonymous" values below and above)

- The largest value for each edge e, $V_{1,e}$, assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V_{2,e} is assigned the *opposite*, deterministically



- This equivalent algorithm viewpoint has been exploited in the secretary algorithm literature (e.g., Korula and Pal '09, Ma, Tang, and Wang '11)
- Key difficulty in our setting:
 - The status of the V_{2,i}'s (i.e., whether they are a sample or reward) are correlated with status of the corresponding V_{1,i}

A key idea of our proofs is constructing a set of "heavy" elements which are (effectively) guaranteed to be collected, *even* in *adversarial* order

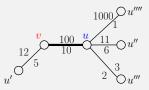
Safe Edges (Matching with Edge Arrivals)

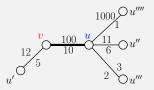
We can an edge $e = \{v, u\}$ "safe" for a vertex v if:

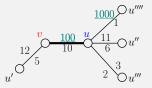
• $V_{1,e}$ is a **reward** that would be in the greedy solution *w.r.t. samples, if it were a sample*

- "Could be in the greedy solution"
- \bigcirc No edge neighboring v can block e from being accepted
 - "No conflicts with v"
- No edge of smaller weight than e neighboring u can block e from being accepted
 - "No small conflicts with u"

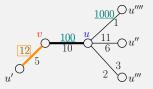
Let's see how, through $\ensuremath{\textbf{greedy-ordered selection}}\xspace$, to ensure that a "heavy" edge is "safe"



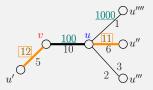




- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
 - $e = \{v, u\}$ could be added to the greedy solution w.r.t. samples, if
 - $V_{1,e} = 100$ were a sample
 - $O V_{1,e} = \underline{100} \text{ is a reward}$



- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
 - **Q** $e = \{v, u\}$ could be added to the **greedy solution w.r.t. samples**, *if*
 - $V_{1,e} = 100$ were a sample
 - $O V_{1,e} = \underline{100} \text{ is a reward}$
- Fix a *small number* of coin flips to guarantee safety of *e*



- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
 - **Q** $e = \{v, u\}$ could be added to the greedy solution w.r.t. samples, if
 - $V_{1,e} = 100$ were a sample
 - $O V_{1,e} = \underline{100} \text{ is a reward}$
- Fix a *small number* of coin flips to guarantee safety of *e*
- After fixing 2 coin flips, $e = \{v, u\}$ is safe for v (but not for u)

Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate: $\mathbb{E} \left[w(ALG) \right] \geq \mathbb{E} \left[w(Safe Edges) \right]$

Can prove that the algorithm collects at least the weight of the safe edges

Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate:

$$\begin{split} \mathbb{E}\left[w(\mathrm{ALG})\right] &\geq \mathbb{E}\left[w(\mathsf{Safe Edges})\right] \\ &\geq 1/8 \cdot \mathbb{E}\left[w(\mathsf{Greedy Solution})\right] \end{split}$$

Loss to ensure edges are *safe*

Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate:

$$\mathbb{E}\left[w(ALG)
ight] \geq \mathbb{E}\left[w(Safe Edges)
ight] \ \geq \frac{1}{8} \cdot \mathbb{E}\left[w(Greedy Solution)
ight] \ \geq \frac{1}{16} \cdot \mathbb{E}\left[w(OPT)
ight]$$

Loss due to the greedy matching (2-approximation of OPT)

- Prophet inequalities appear "easier" than secretary problems:
 - ▶ ∃ a 2-approximation for matroid prophet inequalities
 - Best known (order-oblivious) matroid secretary is O(log log(rank))

- Prophet inequalities appear "easier" than secretary problems:
 - ▶ \exists a 2-approximation for matroid prophet inequalities
 - ▶ Best known (order-oblivious) matroid secretary is $O(\log \log(rank))$
- What about SSPIs? Is there hope for a 2-competitive matroid SSPI?

Recall: Equivalent sample/reward generation for SSPIs

Viewpoint 1 (all offline):

O Two samples V_{1,e}, V_{2,e} ∼ D_e are drawn independently for every element e for arbitrary D_e

• A *single* independent coin flip for each *e* decides which is a sample/reward Viewpoint 2:

- **Q** Draw samples $S_e \sim D_e$ for each element *e offline*
- **②** Online, one at a time, draw reward $X_e \sim D_e$

Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **O** Adversary chooses 2 arbitrary values $V_{1,e}$, $V_{2,e}$ for every element e
- **a** A single independent coin flip for each e decides which is a sample/reward

Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **(**) Adversary chooses 2 arbitrary values $V_{1,e}$, $V_{2,e}$ for every element e
- **O** A single independent coin flip for each e decides which is a sample/reward

(*) Reward and sample can be correlated!!

Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **O** Adversary chooses 2 arbitrary values $V_{1,e}$, $V_{2,e}$ for every element e
- A single independent coin flip for each e decides which is a sample/reward

(*) Reward and sample can be correlated!!

Observation

Every known SSPI is actually a "Pointwise"-SSPI

Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **(**) Adversary chooses 2 arbitrary values $V_{1,e}$, $V_{2,e}$ for every element e
- **Q** A single independent coin flip for each e decides which is a sample/reward

Theorem ("Pointwise"-SSPI implies OOS)

An α -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an 2α -competitive OOS on the same feasible set

Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **Q** Adversary chooses 2 arbitrary values $V_{1,e}$, $V_{2,e}$ for every element e
- A single independent coin flip for each e decides which is a sample/reward

Theorem ("Pointwise"-SSPI implies OOS)

An α -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an 2α -competitive OOS on the same feasible set

Theorem (Azar, Kleinberg, Weinberg '13: OOS implies SSPI)

An $\alpha\text{-competitive OOS}$ on any feasible set implies an $\alpha\text{-competitive SSPI}$ on the same feasible set

Theorem ("Pointwise"-SSPI implies OOS)

An α -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an 2α -competitive OOS on the same feasible set

Theorem (Azar, Kleinberg, Weinberg '13: OOS implies SSPI)

An $\alpha\text{-competitive OOS}$ on any feasible set implies an $\alpha\text{-competitive SSPI}$ on the same feasible set

• Partial converse to the reduction of AKW'13!

A closing question

Question

Are there SSPIs which are **not** "Pointwise"??

A closing question

Question

Are there SSPIs which are **not** "Pointwise"??

• If not, constant-competitive matroid SSPI would resolve *matroid secretary conjecture*...

A closing question

Question

Are there SSPIs which are **not** "Pointwise"??

• If not, constant-competitive matroid SSPI would resolve *matroid secretary conjecture*...

Thanks for listening!