# Single-Sample Prophet Inequalities via Greedy-Ordered Selection

Matthew Faw (UT Austin)

January 10, 2022

Joint work with C.Caramanis, P.Dütting, F.Fusco, P.Lazos, S.Leonardi, O.Papadigenopoulos, E.Pountourakis, and R.Reiffenhäuser

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must *irrevocably* decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game

$$X_1 = 10 \qquad X_2 = 2 \qquad X_3 = 11$$

$$D_1 \qquad D_2 \qquad D_3 \qquad D_4 \qquad D_5$$

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must *irrevocably* decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game

$$X_1 = 10 \qquad X_2 = 2 \qquad X_3 = 11$$

$$D_1 \qquad D_2 \qquad D_3 \qquad D_4 \qquad D_5$$

• Prophet collects *largest* reward  $\max_{i \in [N]} X_i$ .



SSPIs via Greedy-Ordered Selection

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must *irrevocably* decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game
- Prophet collects *largest* reward  $\max_{i \in [N]} X_i$ .
- **Goal**: Maximize expected reward collected by Gambler, relative to that of an *all-knowing* Prophet.

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

- *N* rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must *irrevocably* decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game
- Prophet collects *largest* reward  $\max_{i \in [N]} X_i$ .
- **Goal**: Maximize expected reward collected by Gambler, relative to that of an *all-knowing* Prophet.
  - i.e., design an " $\alpha$ -competitive" Gambler:

$$\inf_{\mathcal{D}=\mathcal{D}_1\times\ldots\times\mathcal{D}_N}\frac{\mathbb{E}_{\mathcal{D}}\left[\mathsf{Gambler}\right]}{\mathbb{E}_{\mathcal{D}}\left[\mathsf{Prophet}\right]}\geq\frac{1}{\alpha}.$$

for smallest possible  $\alpha \geq 1$ 

2/18

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

Notable Results:

- $\exists$  a 2-competitive *threshold-based* Gambler policy
- No policy can be < 2-competitive
- But need to know all distributions to compute these thresholds...

Single-Sample Prophet Inequalities (SSPIs) are a simple variation on the classic *Prophet Inequality* problem:

Notable Results:

- $\exists$  a 2-competitive *threshold-based* Gambler policy
- No policy can be < 2-competitive
- But need to know all distributions to compute these thresholds...

#### Question

What (if anything) can a Gambler do if she has only a single sample from each  $D_i$ ?

#### Gambling Against a Prophet with a Single Sample

- *N* samples  $S_i \sim D_i$  given, rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must *irrevocably* decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game

$$X_1 = 10$$
  $X_2 = 2$   $X_3 = 11$ 



• Prophet collects *largest* reward  $\max_{i \in [N]} X_i$ .

 $X_{1} = 10 X_{2} = 2 X_{3} = 11 X_{4} = 100 X_{5} = 0$   $S_{1} = 5 S_{2} = 10 S_{3} = 100 S_{4} = 0 S_{5} = 1$ 

3/18

## Gambling Against a Prophet with a Single Sample

- *N* samples  $S_i \sim D_i$  given, rewards  $X_i \sim D_i$  arrive one at a time
- Gambler must irrevocably decide whether to:
  - a) Collect  $X_i$  and end the game, or
  - b) Forfeit  $X_i$  and continue the game
- Prophet collects *largest* reward  $\max_{i \in [N]} X_i$ .
- Perhaps surprisingly, Rubenstein, Wang, and Weinberg (ITCS'20) proved that
  - $\exists$  a 2-competitive (hence *optimal*) **single-sample** policy:
    - Accept the first reward  $\geq \tau = \max_i S_i$

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)
- However, this reduction is *necessarily* lossy:
  - Some rewards and samples are never used/observed by the policy
  - Leads to inherently suboptimal competitive guarantees

• Rewards can be collected subject to combinatorial constraints:

- Matroid (e.g., choose k, spanning trees, ...)
- Matchings
- Combinatorial Auctions
- Optimal policies are known for some of these settings (e.g., matroids), but require *distributional* knowledge...
- Nearly all **single-sample** prophet inequalities (SSPIs) come via a reduction *to* **order-oblivious secretaries** (OOSs)
- However, this reduction is *necessarily* lossy:
  - Some rewards and samples are never used/observed by the policy
  - Leads to inherently suboptimal competitive guarantees

Can we do better??

4/18

# **Our Contributions**

- Analyze SSPIs beyond single-choice directly, without reducing to OOS, via an idea we term greedy-ordered selection
- Identify a common property of matroids exploited in many OOS algorithms

   a partition property which can be used (together with the optimal single-choice SSPI) to obtain improved competitive guarantees
- O Discuss some interesting new connections between SSPIs and OOSs

# **Our Contributions**

#### Our focus today:

- Analyze SSPIs *beyond* single-choice **directly**, *without* reducing to OOS, via an idea we term **greedy-ordered selection** 
  - Specifically for the case of matching with edge arrivals
- Identify a common property of matroids exploited in many OOS algorithms

   a partition property which can be used (together with the optimal single-choice SSPI) to obtain improved competitive guarantees
- O Discuss some interesting new connections between SSPIs and OOSs

# Some Notable Results

|                |           | Combinatorial set                     | Previous best               | Our results  |
|----------------|-----------|---------------------------------------|-----------------------------|--------------|
|                |           | General matching (edge arrivals)      | 512                         | 16           |
| red            |           | Budget-additive combinatorial auction | N/A                         | 24           |
| de             | uo        | Bipartite matching (edge arrivals)    | 256                         | 16           |
| ō-             | selection |                                       | 6.75 (degree- <i>d</i> )    | 16           |
| Greedy-ordered | sele      |                                       | $\mathcal{O}(d^2)$ -samples | 1 sample     |
| J.e            |           | Bipartite matching (vertex arrivals)  | 13.5                        | 8            |
|                |           | Transversal matroid                   | 16                          | 8            |
| ۲              | ×         | Graphic matroid                       | 8                           | 4            |
| artition       | property  | Co-graphic matroid                    | 12                          | 6            |
| arti           |           | Low density matroid                   | $4\gamma(M)$                | $2\gamma(M)$ |
| ۲.             |           | Column k-sparse linear matroid        | 4 <i>k</i>                  | 2 <i>k</i>   |

Table: Summary of main results

|--|--|--|--|--|--|--|

# Main Idea: Greedy-Ordered Selection

Our main results (for matchings and combinatorial auctions) are obtained through a framework we call **greedy-ordered selection**. The general technique is:

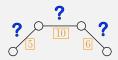
- O Design a threshold-based Gambler policy
- Ouple this policy to an *equivalent* "offline" algorithm which traverses samples *and* rewards *together* in decreasing order of weight
- Guarantee that "important" elements are "typically" selected by this offline algorithm (which is *easier to analyze*)

# Greedily Gambling Against a Prophet with a Single Sample

The greedy online policy for matching with edge arrivals:

- Samples  $S_e \sim D_e$  for each edge *e* given, rewards  $X_e \sim D_e$  arrive one at a time
  - Offline, compute the greedy (maximal) matching  $M_S$  on the samples
  - Set a threshold  $\tau_e$  to be the weight of the heaviest edge in  $M_S$  adjacent to e.
  - ▶ Online, accept each arriving edge *e* if it is feasible and  $X_e \ge \tau_e$ .

Offline (samples shown below in orange)



9/18

Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 



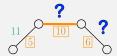
Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 



Online (rewards shown above in blue)

• Rewards X<sub>e</sub> arrive one at a time

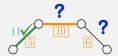


Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 

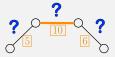


- Rewards X<sub>e</sub> arrive one at a time
- Accept an arriving edge *e* iff it is:
  - Feasible
  - ${f O}$  Above  $au_e$ , the heaviest edge in  $M_S$  adjacent to e

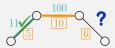


Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 

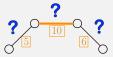


- Rewards  $X_e$  arrive one at a time
- Accept an arriving edge *e* iff it is:
  - Feasible
  - 2 Above  $\tau_e$ , the heaviest edge in  $M_S$  adjacent to e



Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 

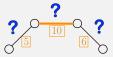


- Rewards  $X_e$  arrive one at a time
- Accept an arriving edge *e* iff it is:
  - Feasible



Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 

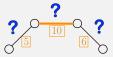


- Rewards  $X_e$  arrive one at a time
- Accept an arriving edge *e* iff it is:
  - Feasible



Offline (samples shown below in orange, threshold  $\tau_e = 10$  for every edge)

• Compute greedy matching on samples  $M_S$ 



- Rewards  $X_e$  arrive one at a time
- Accept an arriving edge *e* iff it is:
  - Feasible



#### An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

- Deferred decisions (offline):
  - ► (Conceptually) generate 2 "anonymous" values  $V_{1,e}$ ,  $V_{2,e} \sim D_e$  for each edge e (relabel s.t.  $V_{1,e} > V_{2,e}$ )
  - Greedily traverse these 2n values:
    - When V<sub>1,e</sub> is encountered, flip a *fair coin* to determine "status" (reward/sample)
    - 2 When  $V_{2,e}$  is encountered, set its status to opposite of  $V_{1,e}$

## An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

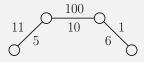
- Deferred decisions (offline):
  - ► (Conceptually) generate 2 "anonymous" values  $V_{1,e}$ ,  $V_{2,e} \sim D_e$  for each edge e (relabel s.t.  $V_{1,e} > V_{2,e}$ )
  - Greedily traverse these 2n values:
    - When V<sub>1,e</sub> is encountered, flip a *fair coin* to determine "status" (reward/sample)
    - 2 When  $V_{2,e}$  is encountered, set its status to *opposite* of  $V_{1,e}$
- Compute the greedy sample solution,  $M_S$ , and the thresholds,  $\tau_e$ , *exactly* as before

## An equivalent offline simulation

The equivalent offline policy for matching with edge arrivals:

- Deferred decisions (offline):
  - ► (Conceptually) generate 2 "anonymous" values  $V_{1,e}$ ,  $V_{2,e} \sim D_e$  for each edge e (relabel s.t.  $V_{1,e} > V_{2,e}$ )
  - Greedily traverse these 2n values:
    - When V<sub>1,e</sub> is encountered, flip a *fair coin* to determine "status" (reward/sample)
    - 2 When  $V_{2,e}$  is encountered, set its status to *opposite* of  $V_{1,e}$
- Compute the greedy sample solution,  $M_S$ , and the thresholds,  $\tau_e$ , *exactly* as before
- Accept elements online *exactly* as before

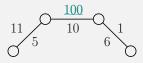
Offline (2n "anonymous" values below and above)



11/18

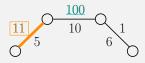
Offline (2n "anonymous" values below and above)

• The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2

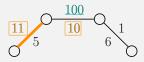


Offline (2n "anonymous" values below and above)

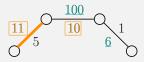
• The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2



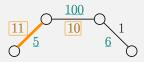
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for each edge e,  $V_{2,e}$  is assigned the opposite, deterministically



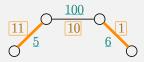
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for each edge e,  $V_{2,e}$  is assigned the opposite, deterministically



- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for each edge e,  $V_{2,e}$  is assigned the opposite, deterministically

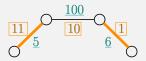


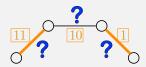
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for each edge e,  $V_{2,e}$  is assigned the opposite, deterministically



Offline (2n "anonymous" values below and above)

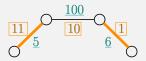
- $\bullet$  The largest value for each edge e,  $V_{1,e},$  assigned as  $\underline{reward}$  or sample w.p.  $1\!/\!2$
- The smaller value for *each edge e*, *V*<sub>2,*e*</sub> is assigned the *opposite*, deterministically





Offline (2n "anonymous" values below and above)

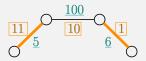
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, *V*<sub>2,*e*</sub> is assigned the *opposite*, deterministically





Offline (2n "anonymous" values below and above)

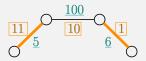
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V<sub>2,e</sub> is assigned the *opposite*, deterministically





Offline (2n "anonymous" values below and above)

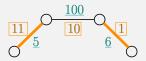
- $\bullet$  The largest value for each edge e,  $V_{1,e},$  assigned as  $\underline{reward}$  or sample w.p.  $1\!/\!2$
- The smaller value for *each edge e*, *V*<sub>2,*e*</sub> is assigned the *opposite*, deterministically





Offline (2n "anonymous" values below and above)

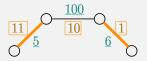
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V<sub>2,e</sub> is assigned the *opposite*, deterministically

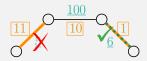




Offline (2n "anonymous" values below and above)

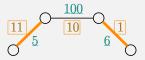
- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for each edge e,  $V_{2,e}$  is assigned the opposite, deterministically





Offline (2*n* "anonymous" values below and above)

- The largest value for each edge e,  $V_{1,e}$ , assigned as reward or sample w.p. 1/2
- The smaller value for *each edge e*, V<sub>2,e</sub> is assigned the *opposite*, deterministically





- This equivalent algorithm viewpoint has been exploited in the secretary algorithm literature (e.g., Korula and Pal '09, Ma, Tang, and Wang '11)
- Key difficulty in our setting:
  - The status of the V<sub>2,i</sub>'s (i.e., whether they are a sample or reward) are correlated with status of the corresponding V<sub>1,i</sub>

A key idea of our proofs is constructing a set of "heavy" elements which are (effectively) guaranteed to be collected, *even* in *adversarial* order

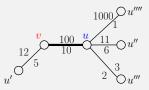
# Safe Edges (Matching with Edge Arrivals)

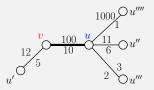
We can an edge  $e = \{v, u\}$  "safe" for a vertex v if:

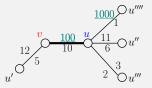
•  $V_{1,e}$  is a **reward** that would be in the greedy solution *w.r.t. samples, if it were a sample* 

- "Could be in the greedy solution"
- $\bigcirc$  No edge neighboring v can block e from being accepted
  - "No conflicts with v"
- No edge of smaller weight than e neighboring u can block e from being accepted
  - "No small conflicts with u"

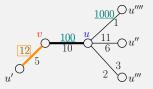
Let's see how, through  $\ensuremath{\textbf{greedy-ordered selection}}\xspace$  , to ensure that a "heavy" edge is "safe"



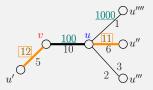




- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
  - $e = \{v, u\}$  could be added to the greedy solution w.r.t. samples, if
    - $V_{1,e} = 100$  were a sample
  - $O V_{1,e} = \underline{100} \text{ is a reward}$



- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
  - **Q**  $e = \{v, u\}$  could be added to the **greedy solution w.r.t. samples**, *if* 
    - $V_{1,e} = 100$  were a sample
  - $O V_{1,e} = \underline{100} \text{ is a reward}$
- Fix a *small number* of coin flips to guarantee safety of *e*



- Start with any run of the greedy offline algorithm (which determines sample/reward status of the 2*n* values) such that:
  - **Q**  $e = \{v, u\}$  could be added to the greedy solution w.r.t. samples, if
    - $V_{1,e} = 100$  were a sample
  - $O V_{1,e} = \underline{100} \text{ is a reward}$
- Fix a *small number* of coin flips to guarantee safety of *e*
- After fixing 2 coin flips,  $e = \{v, u\}$  is safe for v (but not for u)

### Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate:  $\mathbb{E} \left[ w(ALG) \right] \geq \mathbb{E} \left[ w(Safe Edges) \right]$ 

Can prove that the algorithm collects at least the weight of the safe edges

### Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate:

$$\begin{split} \mathbb{E}\left[w(\mathrm{ALG})\right] &\geq \mathbb{E}\left[w(\mathsf{Safe Edges})\right] \\ &\geq 1/8 \cdot \mathbb{E}\left[w(\mathsf{Greedy Solution})\right] \end{split}$$

Loss to ensure edges are *safe* 

## Proof for Matching with Edge Arrivals

With the safe edges defined, the competitive guarantee is (almost) immediate:

$$\mathbb{E}\left[w(ALG)
ight] \geq \mathbb{E}\left[w(Safe Edges)
ight] \ \geq \frac{1}{8} \cdot \mathbb{E}\left[w(Greedy Solution)
ight] \ \geq \frac{1}{16} \cdot \mathbb{E}\left[w(OPT)
ight]$$

Loss due to the greedy matching (2-approximation of OPT)

- Prophet inequalities appear "easier" than secretary problems:
  - ▶ ∃ a 2-approximation for matroid prophet inequalities
  - Best known (order-oblivious) matroid secretary is O(log log(rank))

- Prophet inequalities appear "easier" than secretary problems:
  - ▶  $\exists$  a 2-approximation for matroid prophet inequalities
  - ▶ Best known (order-oblivious) matroid secretary is  $O(\log \log(rank))$
- What about SSPIs? Is there hope for a 2-competitive matroid SSPI?

#### Recall: Equivalent sample/reward generation for SSPIs

Viewpoint 1 (all offline):

O Two samples V<sub>1,e</sub>, V<sub>2,e</sub> ∼ D<sub>e</sub> are drawn independently for every element e for arbitrary D<sub>e</sub>

• A *single* independent coin flip for each *e* decides which is a sample/reward Viewpoint 2:

- **Q** Draw samples  $S_e \sim D_e$  for each element *e offline*
- **②** Online, one at a time, draw reward  $X_e \sim D_e$

### Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **O** Adversary chooses 2 arbitrary values  $V_{1,e}$ ,  $V_{2,e}$  for every element e
- **a** A single independent coin flip for each e decides which is a sample/reward

### Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **(**) Adversary chooses 2 arbitrary values  $V_{1,e}$ ,  $V_{2,e}$  for every element e
- **O** A single independent coin flip for each e decides which is a sample/reward

(\*) Reward and sample can be correlated!!

#### Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **O** Adversary chooses 2 arbitrary values  $V_{1,e}$ ,  $V_{2,e}$  for every element e
- A single independent coin flip for each e decides which is a sample/reward

(\*) Reward and sample can be correlated!!

#### Observation

Every known SSPI is actually a "Pointwise"-SSPI

#### Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **(**) Adversary chooses 2 arbitrary values  $V_{1,e}$ ,  $V_{2,e}$  for every element e
- **Q** A single independent coin flip for each e decides which is a sample/reward

#### Theorem ("Pointwise"-SSPI implies OOS)

An  $\alpha$ -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an  $2\alpha$ -competitive OOS on the same feasible set

### Definition ("Pointwise"-SSPI)

An SSPI which maintains its competitive guarantee when the rewards/samples are generated as follows:

- **Q** Adversary chooses 2 arbitrary values  $V_{1,e}$ ,  $V_{2,e}$  for every element e
- A single independent coin flip for each e decides which is a sample/reward

### Theorem ("Pointwise"-SSPI implies OOS)

An  $\alpha$ -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an  $2\alpha$ -competitive OOS on the same feasible set

### Theorem (Azar, Kleinberg, Weinberg '13: OOS implies SSPI)

An  $\alpha\text{-competitive OOS}$  on any feasible set implies an  $\alpha\text{-competitive SSPI}$  on the same feasible set

### Theorem ("Pointwise"-SSPI implies OOS)

An  $\alpha$ -competitive "Pointwise"-SSPI on any downward-closed feasible set implies an  $2\alpha$ -competitive OOS on the same feasible set

### Theorem (Azar, Kleinberg, Weinberg '13: OOS implies SSPI)

An  $\alpha\text{-competitive OOS}$  on any feasible set implies an  $\alpha\text{-competitive SSPI}$  on the same feasible set

• Partial converse to the reduction of AKW'13!

## A closing question

Question

Are there SSPIs which are **not** "Pointwise"??

# A closing question

#### Question

Are there SSPIs which are **not** "Pointwise"??

• If not, constant-competitive matroid SSPI would resolve *matroid secretary conjecture*...

# A closing question

#### Question

Are there SSPIs which are **not** "Pointwise"??

• If not, constant-competitive matroid SSPI would resolve *matroid secretary conjecture*...

Thanks for listening!